17e Assises Nationales du RT-MFM

From confocal imaging to 3D RNA profiling: The catshark model

S. Mazan Développement et évolution des vertébrés BIOM 07/12/2021, Banyuls

The catshark: chondrichthyan!

- A key phylogenetic position
- Generality of mechanisms inferred from mouse or zebrafish
- Blueprint of ancestral gnathostomes
- Origin of gnathostome innovations

Broad characteristics

- Abundant species on European coasts
- Easy to maintain in laboratory conditions
- Overlong generation time
- Rate of egg production/female: loose seasonality, 2 eggs every two weeks
- Local production: 1000-2000 eggs per year

> One of the very few experimentally tractable chondrichthyan species

Developmental characteristics

Clichés: R. Lagadec, B. Godard

- Slow : hatching after 5-6 months at 16°C
- Telolecithal egg
- Large blastoderm, large embryo size
- Relatively inaccessible: collagen egg case
- Embryo development outside egg case: only from advanced orgagenesis stages

Methodological tools

Evolution of : gene/organ profiles neuronal connectivity patterns developmental mechanisms regulatory landscapes

Descriptive approaches

Cliché: M. Coolen

- ISH
- IHC
- Neuronal tract tracing
- Section/whole-mount confocal imaging

Experimental approaches

Clichés: B. Godard & R. Lagadec

- Cell tracing using lipophilic dyes
- BrdU incorporation
- Functional analyses of signaling pathways

Experimentally accessible evo-devo model

Genomics/transcriptomics

Data: H. Mayeur & R. Lagadec

- scRNA-seq
- ATAC-seq
- Spatial transcriptomics

Imaging catshark embryos

• Fluorescent IHC, ISH on sections: +++

no background or autofluorescence

• Time-lapse imaging : +/-

major limitations due to embryo inaccessibility, non-transparency

• 3D imaging : ++

Clearing protocols to optimize depending on stage/tissue/tracers Size possibly challenging Light sheet microscopy set-ups to optimize

3D RNA profiling: RNA tomography

Objective: genome wide 3D RNA profile of embryo, organ, tissue

Generation of 3D digital model: n voxels

Multiple questions in developmental biology Comprehensive cross-species comparisons No a priori knowledge needed

RNA tomography: 3 main steps

2. Illumina library construction from serial sections - sequencing

3. Projection on 3D digital model of tissue (Iterative Proportional Fitting)

Generation of a 3D RNA profile: embryonic catshark head, stage 17

- Sequencing: total of 97 sections (18 μm)
- PE100: 90 M reads
- Expression information: 30 000 genes (21 000 coding)

12725 voxels

Data: R. Lagadec, H. Mayeur

Regionalized profiles along each axis

Consistent with ISH results

Generation of a genome-wide 3D RNA profile

- Confocal imaging and generation of 3D mask
- Projection of section reads onto mask
- 12725 voxels with quantified expression data for 20040 gene models

Confocal imaging

Digitalized mask

Digital expressions

XM_038803059.1	XM_038806029.1	XM_038787585.1
Irx1I	Nkx2.2	Gbx2
XM_038802336.1	XM_038813316.1	XM_038795394.1
Vg1	Six3	Emx3
	Ö	R

Validation: regionalized profiles along AP axis

• Consistent with ISH results

Validation: regionalized profiles along DV axis

Consistent with ISH results

Validation: regionalized profiles along LR axis

- Transverse digital sections
- Left-restricted digital profiles
- Consistent with ISH results

Extracting novel information

1. Autocorrelation

Objective: search for regionalized profiles

- Pearson correlation between expression of each pair of "neighboring" voxels
- Autocorrelation value and P-value for each gene

A quantified regionalization indicator

- High autocorrelation/p-value=0: Highly regionalized profiles
- Low autocorrelation/high p-value: dispersed positive voxels
- More than 50% genes with regionalized digital profiles

ScFoxq1

Extracting novel information

2. Correlation

Objective: characterize the gene repertoire expressed in a given territory

- Pearson correlation between expressions of a reference marker and other genes in all voxels
- List of correlation values for all genes relative to the reference marker

Application: search of genes correlated to a reference marker

Shh (ventral midline)

- Include known midline markers or Shh targets such as Foxa2, Slit3 or Patched1
- > Novel markers, such as *Igfbp3*

A relevant tool to identify novel regional markers

Sagittal, 15/30

RNA tomography in catshark: conclusions

- Generation of a reference dataset in the catshark
- Bioinformatic tools to extract novel information
- Limitations: resolution, best suited to polarised profiles, minimal organ size needed
- Advantages: genome-wide information, robust and fast, few experimental adaptations needed, cost effective, applicable to a broad range of species/organs
- Ideally suited to large organs /embryos such as in catshark
- Novel perspectives in a broad range of organisms

Thanks to:

UMR7232-BIOM, Banyuls

Development and evolution of vertebrates

Ronan Lagadec Léo Michel Hélène Mayeur Maxence Lanoizelet

Service Fourniture de modèles Michaël Fuentes

Observatoire Océanologique Banyuls sur Mer

BioPIC Bio2MAR SSIC Service Aquariologie

UMR5077-MCD Toulouse

Neuronal identities in the zebrafish

Patrick Blader Aurélie Quillien

UMR5219 - Institut de mathématiques Toulouse Sébastien Dejean

OBSERVATOIRE OCÉANOLOGIQUE de Banyuls/Mer 1882

